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ABSTRACT
To better represent human interactions in social networks, the 
authors take a network-oriented simulation approach to analyze 
the evolution of acquaintance networks based on local interaction 
rules. Our approach takes into consideration shared friendships, 
resources, remembering, meetings by chance, and arriving and 
leaving. Our three main findings are: (a) the topological features 
of acquaintance networks are affected by initial average values 
for parameters (i.e., resources, remembering, and number of 
friendships), but not by their statistical distributions; (b) resources, 
remembering, and initial friendships positively influence 
increases in average numbers of friends and decreases in degrees 
of clustering and separation; and (c) widely used fieldwork 
sampling methods do not capture the actual node degree 
distributions of social networks. In addition to confirming the 
successful use of a network-oriented simulation approach to social 
network research, the findings indicate a strong need for an 
approach that stresses interactive rules and “what-if” type 
simulation experiments. 

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications 

General Terms
Algorithms, Economics, Experimentation, Human Factors. 

Keywords
acquaintance networks, social networks, small world phenomena, 
network-oriented simulations. 

1. INTRODUCTION 
The primary feature of any social network is its small world 
phenomena of low degree of separation (indicating how small the 
world is) and high degree of clustering (explaining why our 
friend’s friend is often our friend also). Watts and Strogatz’s [1] 
research has been the basis for building social simulation models, 
many of which mix regular and random networks (see, for 
example, [2][3][4]). However, these models have a significant 
drawback: since they neglect local rules that affect interactions 
and relationships between individuals, they are good for 
explaining small world phenomena but inadequate for explaining 
the evolutionary mechanisms and detailed connection patterns of 
social networks. Furthermore, researchers have shown a tendency 
to focus on the final products of network topologies and a bias 
toward top-down approaches that facilitate theoretical analyses 

[1][2][3]–[8]. Actual social network evolution involves bottom-up 
processes that entail local human interactions, which explains our 
study focus on local interaction rules and dynamic growth 
processes that affect social network formation. 

Examples of other complex network models and applications for 
referencing when researching social networks are (a) Barabási and 
Albert’s (hereafter referred to as BA’s) [9] use of growth and 
preferential attachment mechanisms to establish a scale-free 
network model in which node degree distribution follows a 
power-law feature, and (b) Albert et al.’s [10] proposal that the 
Internet possesses scale-free features. Nodes and edges in BA’s 
scale-free model are added continuously to a network over time 
(growth); edges are more likely to link with high connectivity 
nodes than low connectivity nodes (preferential attachment 
mechanism). To realistically simulate this kind of complex 
network, Li and Chen [11] have added the concept of local-world 
connectivity that is found in many complex physical networks. 
Their local-world model exhibits transitions between power-law 
and exponential scaling; BA’s scale-free model is one of several 
special cases. 

As is the case with other complex networks, social networks 
exhibit the small world phenomena of low degree of separation 
and high degree of clustering, but they differ in terms of detail 
[12]. However, we believe there are three reasons why Internet or 
Web-based growth models are inappropriate for describing 
growth in social networks: (a) in many social networks the node 
degree distribution does not reflect power-law features; (b) social 
networks usually have high degrees of clustering, but Internet or 
Web-based growth models reflect low degrees of clustering; and 
(c) preferential attachment mechanisms are not an important 
feature of social networks. Accordingly, Jin et al.’s [13] model of 
social network evolution entails a sharply peaked distribution that 
is in accordance with observations for many real social networks. 
Features of real social networks that they have identified in their 
simulation models include the formation of closely-knit 
communities and high degrees of network transitivity. 

Acquaintance networks are social networks that represent the 
processes and results of people meeting people. Befriending 
someone in a social network is an important daily activity, one 
that more often than not involves a friend or acquaintance who 
serves as an intermediary. However, a significant number of 
acquaintances occur by chance, with two or more individuals 
coming together at a specific time in a specific place because of a 
shared interest or activity. Davidsen et al. [14] have proposed a 
model based on two local and interactive rules for building 
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acquaintance networks—one for introductions and meeting by 
chance, and one for the effects of aging on acquaintance networks. 
Their model is considered more realistic because it acknowledges 
the simple observation that everyone’s friends regularly introduce 
them to additional friends. However, their model is still 
inadequate for explaining changes that occur once acquaintances 
evolve into friendships—that is, strengthening, weakening, or 
separation prior to death. 

In this paper we will introduce what we believe is an essential 
rule that reflects limited individual resources and remembering—
the latter defined as a memory factor through which individuals 
maintain or neglect their friendships. This bottom-up, network-
oriented simulation approach allows for analyses of how 
individual interaction factors affect the evolution and detailed 
connection structures of acquaintance networks. For example, 
researchers can adopt different friend-making resource 
distributions and probe their effects on entire acquaintance 
networks, or measure correlations between statistical topology 
features under different circumstances. We believe that simulation 
models that consider limited resources and remembering will 
produce results of use to sociologists, epidemiologists, computer 
scientists, and public health professionals—all of whom regularly 
work with social and epidemic transmission dynamics that 
involve acquaintance networks. 

2. MODEL 
Davidsen et al. [14] have proposed a two-rule model of 
acquaintance network evolution: the first addresses how people 
make new friends via introductions or meetings-by-chance, and 
the second addresses how friendships are broken when one party 
dies. Their model formulates a fixed number of N nodes and 
undirected links between pairs of nodes representing individuals 
who know each other. Here we will introduce a remembering rule 
that allows for the weakening and strengthening of friendships 
(Fig. 1), with simulation models repeating the resulting new set of 
rules until the acquaintance network being simulated reaches a 
statistically stationary state: 

1. Friend making. Randomly chosen persons introduce two 
friends to each other. If this is their first meeting, a new link 
is formed. Randomly chosen persons with less than two 
friends introduce themselves to one other random person. 
Note that we use the term “introduce” to describe meetings 
by chance as well as through a common friend. 

2. Arriving and leaving. At probability p, a randomly chosen 
individual and all associated links are removed from a 
network and replaced by another person. Accordingly, 
groups of acquaintances can be viewed as friend circles 
whose members can enter for reasons other than birth and 
leave for reasons other than death. 

3. Remembering. A certain number of friendships are updated, 
with the number depending on an update proportion b. 

We considered three selection methods for updating friendships. 
In the first (person selection), b × N persons are chosen randomly 
before selecting a specific friend for each person and updating 
their friendship. Updates do not occur for persons who do not 
have any friends. N denotes the number of persons in the network 
and b is a proportion factor for deciding how many persons are 

chosen. In the second method (pair selection), b × N pairs of 
persons are chosen randomly and their friendships are updated. 
Updating is canceled if the paired persons do not know each 
other a frequent occurrence, since the network in question is 
sparse compared to complete graphs. In this method, b denotes a 
proportion factor for deciding how many pairs are chosen. In the 
final method (edge selection), b × M friendships are directly 
selected for updating. Here b is a proportion factor for deciding 
how many friendships are chosen, and M the number of 
friendships (or edges) at any given moment. 
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Figure 1. Three-rule model flow diagram. 
We rejected the first two methods because in both cases the 
numbers of chosen friendships were proportional to N (number of 
nodes or persons). Furthermore, we adopted the edge selection
method for choosing friendships because [N × (N – 1) / 2] (the 
upper bound of number of friendships) is directly proportional to 
M (the total number of edges or friendships). 
If a selected friendship links person u with person v, their 
friendship is updated using the following equation, dependent 
upon individual remembering, resource, and breakup threshold 
factors: 
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where ,
new

u vf represents the new friendship between u and 

v, ,
old

u vf the original friendship, q the remembering of an old 
friend, θ the breakup threshold, ru person u’s friend-making 
resources, ku his or her number of friends, and rv and kv
person v’s resources and friend numbers, respectively. J is 
a joint function and D a distribution function. For 
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convenience, the q, r, and θ parameters are normalized 
between 0 and 1. Simplification without loss of generality 
was the motivation behind our decision to use D(x) = x as 
the distribution function and J(a, b) = (a + b) / 2 as the 
joint function. The updated equation is written as 
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The equation is divided into two parts by the breakup threshold, θ.
The first part consists of the terms q (representing the effect of old 
friendships) and (1 – q) (representing the effect of limited 
resources). The newly updated friendship may weaken or 
strengthen. It may also theoretically equal zero if the new 
friendship is below the breakup threshold, as shown in the second 
part of the equation. 

3. RESULTS
Any simulation based on our proposed model begins with 
parameter initialization and ends once the acquaintance 
network reaches a statistically stationary state. As shown in 
Table 1, initialized parameters include the number of 
persons N, arriving and leaving probability p, updated 
friendship proportion b, old friend remembering q, breakup 
threshold θ, distribution of friend-making resources r, and 
distribution of initial friendship f0. Statistically stationary 
states were determined by observing average node degree 
<k>, average node square degree <k2>, clustering 
coefficient C, and average path length L. Each of these four 
statistics eventually converged to values with slight 
rippling. 

Table 1. Terms and abbreviations for initialized parameters 
and distributions. 

Abbreviation Description
N Number of persons (nodes) in acquaintance network. 
M Number of friendships (edges) in acquaintance 

network. 
f0, f(t=0) Initial friendship distribution. 

p Leaving and arriving probability in rule 2. 
b Proportion of updated friendships in rule 3. 
f Friendships. 
q Friend remembering. 
r Friend-making resource distribution. 

θ, th Breakup threshold. 
μ, mu Mean

Figure 2 presents a statistically stationary state of parameter 
initialization at N = 1,000, p = 0, b = 0.001, q = 0.9, θ = 0.1, r
with a fixed value of 0.5, and a beta14 f0 (μ = 0.9). Solid blue 
lines indicate the acquaintance network, and the dashed green 
lines in Figures 2c and d indicate ER random model values at the 
same average node degree as the acquaintance model. 

Figure 3 presents a node degree distribution comparison of one of 
our acquaintance networks at a statistically stationary state (solid 

blue curve) with Davis’ corporate directors data (green dashes). 
Our acquaintance network parameters were initialized at N = 
1,000, p = 0, b = 0.001, q = 0.4, θ = 0.1, r = 0.5 (fixed) and f0 = 
0.5 (fixed). Davis’ data are for connections among nearly 8,000 
directors on the boards of Fortune 1,000 companies in 1999 [23]; 
the corresponding node degree distribution has a strong peak and 
a fast exponential tail decay—much faster than for a power-law 
distribution, but slower than for a Poisson or normal distribution 
(see also [6][20]). Interlocking networks of boards and directors 
reveal a remarkable node degree distribution that differs 
significantly from either scale-free or ER random networks [24]. 
Both curves exhibit similar peaks and long tails that do not decay 
smoothly. 
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Figure 2. Examples of a statistically stationary state using the 
proposed model. 

Figure 3. Node degree distribution comparison between one 
instance of our acquaintance network (solid blue line) and 

Davis’ board director data (dashed green line). 
For model validation purposes, we reproduced Davidsen et al.’s 
[14] simulations using their original parameters of N = 7,000 and 
p values of 0.04, 0.01, and 0.0025. As noted in an earlier section, 
the arriving and leaving probability p is the only parameter in rule 
2. In addition to node degree distribution data, we gathered <k>, 
C, and L values (all with varying p values) and analyzed their 
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correlations to determine the effects of p on the acquaintance 
network.
P(k) degree distribution data from the two-rule model are shown 
in Figure 4. All <k>, C, and L values with parameter 
initializations for various probability p values are shown in Figure 
5. The solid blue lines in Figure 5 reflect the application of 
Davidsen et al.’s two-rule model; the dashed green lines reflect 
the application of the ER model at the same average node degree. 
Contrasts between the two lines in Figures 5b and 5c indicate 
small world phenomena in the acquaintance network. According 
to Figure 5a, an individual’s number of friends increases with 
lifespan. A larger p indicates a higher death rate, a lower p a 
longer life span. To reflect the amount of time required to make 
friends, Davidsen et al. narrowed their focus to the p << 0.1 
regime. In an effort to satisfy the needs of integrity theory, we 
also explored the p >> 0.1 regime and found that average node 
degree <k> decreased for p values between 0 and 0.5. This 
decrease slowed once p > 0.1 (Fig. 5a). 
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Figure 4. Two-rule model degree distribution P(k).

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0

<
k> (a )

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7

C (b )

Da vid se n e t  a l.
Ra n dom

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
p

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8

L (c )

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0

<
k> (a )

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
0 .0
0 .1
0 .2
0 .3
0 .4
0 .5
0 .6
0 .7

C (b )

Da vid se n e t  a l.
Ra n dom

0 .0 0 .1 0 .2 0 .3 0 .4 0 .5
p

0
2
4
6
8

1 0
1 2
1 4
1 6
1 8

L (c )

Figure 5. <k>, C and L values according to varying values in 
arriving and leaving probability p.

According to our model, an arriving and leaving probability of 0 
means that rule 2 is inactive, and a remembering proportion of 0 

means that rule 3 is inactive. Once rule 3 becomes inactive, our 
three-rule model becomes the equivalent of Davidsen et al.’s two-
rule model. In all of the simulations described in the following 
sections, N was initialized at 1,000 and b at 0.001. 
To determine the effects of the breakup threshold on the 
acquaintance network, we conducted simulations with parameters 
initialized at different levels of the friendship-breakup threshold θ.
Other initialized parameters were q = 0.6, r = 0.5, and f0 = 0.5. 
The solid blue lines in Figure 6 represent <k>, C, and L statistics 
without rule 2 (p = 0), and the dashed green lines represent the 
same statistics with rule 2 included (p = 0.0025). The data 
indicate that rule 2 (which acts as an aging factor) reduced 
average node degree <k> and clustering coefficient C, but 
increased average path length L.
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Figure 6. <k>, C and L values according to varying values in 
breakup threshold  and arriving and leaving probability p.

According to the data presented in Figure 6, the breakup threshold 
θ decreased the average node degree <k> and increased both 
clustering coefficient C and average path length L. The threshold 
reflects the ease with which a friendship is broken. As expected, a 
higher θ results in a smaller number of “average friends” and 
greater separation between individuals. 
To determine the effects of resources and memory factors on 
acquaintance networks, we ran a series of simulations using 
parameters initialized with different friend-making resource r and 
friend-remembering q values (p = 0, θ = 0.1, and a fixed f0 value 
of 1). Our results revealed that a larger r increased the average 
node degree <k>, but decreased both the clustering coefficient C
and average path length L (Fig. 7). The influences of different 
resource distributions on statistical characteristics (<k>, C, and L)
are not clear; the opposite is true for different resource averages. 
The Figure 7 data also show that increases in q boosted <k> and 
reduced both C and L.
We ran simulations using parameters initialized at different 
initial-friendship f0 and friend-remembering q values (plus p = 0, 
θ = 0.1, and fixed r value = 0.5) to determine the effects of those 
factors on acquaintance networks. Our results indicate that a 
larger f0 raised the average node degree <k> but lowered both the 
clustering coefficient C and average path length L (Fig. 8). 
Different initial friendship averages clearly influenced the 
statistical characteristics, but different initial friendship 
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distributions did not. The Figure 8 data also show that increases in 
the friend remembering q factor raised <k> and lowered both C
and L.
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Figure 7. <k>, C and L values according to varying values for 
friend-remembering q and different distributions of friend-

making resource r.
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Figure 8. <k>, C and L values according to varying values in 
friend-remembering q and different distributions for initial 

friendship f0.
All simulations were relationally cross-classified to analyze the 
effects of different parameters on our proposed model. The 
plus/minus signs in Table 2 denote positive/negative relations 
between parameters and statistics; in Table 3 the signs denote 
correlation strength and direction. As shown in Table 2, positive 
correlations were found between q, r, and f0 and average node 
degree <k>, while negative correlations were found between <k>
and both p and θ. Furthermore, each average node degree had a 
negative relationship with its corresponding average path length. 
All rule 3 parameters positively affected clustering coefficient C
and average path length L; rules 1 and 2 negatively affected C and 
L. Note that friendships are initialized in rule 1 and updated in 
rule 3. 

Surveys, questionnaires, and sampling techniques stand at the 
center of traditional social science research, and are considered 
cheaper and more practical than collecting and organizing large 

amounts of census data. Based on our belief that the effectiveness 
of these methods for analyzing social networks has not been 
thoroughly examined, our first simulation model application was 
run after reaching a statistically stationary state and producing a 
sufficient node sample. Initialized parameters were N = 1,000, p = 
0, b = 0.001, q = 0.4, and θ = 0.1; constants were r = 0.5 and f0 = 
0.5.
Table 2. Effective directions of <k>, C and L according to rule 

1, 2 and 3 statistics. 

Rule 2 Rule 3 Statistics Rule 1
p Q  r f0 

<k> +* – + – + + 
C +* – – + – – 
L –* + – + – – 

Table 2. Summary of correlations among <k>, C and L from 
the experiments. 

Experiments Variational
Parameters C-<k> L-<k> C-L 

3.1 P +++ –– ––– 
3.2 , p –– ––– +++ 
3.3 q, r ––– –– +++ 
3.4 q, f0 ––– –– +++ 

P(k) degree distribution results after sampling at 100, 300, 500 
and 700 nodes are shown in Figure 9. Figures 9a and 9b are log 
plots with log scaling on the X and Y axes; these were used to 
determine if distributions were scale-free. Figures 9c and 9d are 
semi-log plots with log scaling on the X-axis only; these were 
used to determine if distributions were exponential. The degrees 
shown in Figures 9b and 9d are post-normalization, as required 
for different numbers of sampled nodes. Each curve in Figure 9 
represents an ensemble average of 100 sampling repetitions. The 
solid blue lines in Figure 9 reflect a lower sampling ratio of 0.1—
considered common for traditional surveys and sampling 
techniques. The light-blue dotted lines reflect a higher sampling 
ratio (0.7) considered common for a census. Turns in Y-axis 
direction were observed for high sampling rates but not for low. 
As shown, degree distribution clearly lost its original shape after 
sampling.

4. CONCLUSION 
Most small world network models of social networks are 
analyzed using mixes of regular graphs with random 
networks—a practice based on Watts and Strogatz’s [1] 
model, which mixes one regular and one random graph to 
facilitate theoretical analysis. While acknowledging the 
important impact of the WS network model, there is 
growing awareness that social network research should not 
be restricted to issues associated with separation and 
clustering [12]. 
Exploring how people make new friends is a meaningful task. In 
most cases people make new social connections via introductions 
by other friends, but there are many cases in which strangers 
become friends through chance meetings with no introductions. 
With few exceptions, most of us can only give limited attention or 
spend limited resources on friend-making, meaning that friends 
once considered close can become distant over time. In this paper 
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we proposed a three-rule model of network evolution to build a 
better understanding of acquaintance networks. In rule 1, 
acquaintances are made via introductions and chance meetings. 
An aging factor is added in rule 2; in rule 3, friendships are 
altered according to such factors as limited resources, friend 
remembering, breakup thresholds, and initial friendships. 
Experimental simulations are a necessary aspect of social network 
research, not only because of the expenses and other difficulties 
involved with fieldwork, but also because widely used sampling 
approaches cannot capture real social network distributions, since 
distributions for higher sampling rates differ from those for lower 
sampling rates. Taking a bottom-up, network-oriented simulation 
approach to modeling reflects the evolution mechanism of real 
social networks. Building on insights from previous studies, we 
applied local and interactive rules to acquaintance network 
evolution. This approach produced findings that can be used to 
explore human activity in specific social networks—for example, 
rumor propagation and disease outbreaks. 

Figure 9. Model acquaintance network samples. 
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